IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 12, DECEMBER 1985

1491

The N-Version Approach to Fault-Tolerant Software

ALGIRDAS AVIZIENIS, FELLOW, IEEE

Abstract—Evolution of the N-version software approach to the tol-
erance of design faults is reviewed. Principal requirements for the im-
plementation of N-version software are summarized and the DEDIX
distributed supervisor and testbed for the execution of N-version soft-
ware is described. Goals of current research are presented and some
potential benefits of the N-version approach are identified.

Index Terms—Design diversity, fault tolerance, multiple computa-
tion, N-version programming, N-version software, software reliability,
tolerance of design faults.

I. INTRODUCTION

HE transfer of the concepts of fault tolerance to com-

puter software, that is discussed in this paper, began
about 20 years after the first systematic discussion of fault-
tolerant logic structures [49], [41], and the first introduc-
tion of some fault tolerance by duplication or triplication
of hardware subsystems in first generation computers [43],
[16], [18]. The 1950-1970 period was a time of evolution
in both the theoretical development and the practical ap-
plication of fault tolerance techniques in digital systems,
well illustrated by the presentations at the first Interna-
tional Symposium on Fault-Tolerant Computing in March
of 1971 [20]. In the subsequent decade, the field matured
with the emergence of several successful system designs
[6] followed by the appearance of the product line of Tan-
dem computers [9].

All the efforts discussed above were aimed at the toler-
ance of physical faults, either of a permanent or transient
nature. Physical faults are undesirable changes in the
hardware components of the system, e.g., short circuits
between two leads, open circuited transistor junctions, al-
pha particle impacts on dynamic MOSFET memory cells,
etc. Such faults cause errors to appear in the information
that is processed by the computing system. The errors
most often appear as changes in the patterns of zeros and
ones that represent the information. Other errors are time
based: the information fails to arrive or arrives at the
wrong time. Errors that are not detected and eliminated
within the system are likely to lead to the failure of the
computing system to deliver the expected service to other
systems or to human users.

The function of fault tolerance is to preserve the deliv-

Manuscript received April 22, 1985; revised July 17, 1985. This work
was supported in part by the National Science Foundation under Grants
MCS-72-03633, MCS-78-18918, and MCS-81-21696, by the Office of Naval
Research under Contract N0014-79-C-0866, by the Battelle Memorial In-
stitute, and by the Advanced Computer Science Program of the Federal
Aviation Administration.

The author is with the Department of Computer Science, University of
California, Los Angeles, CA 90024.

ery of expected services despite the presence of fault-
caused errors within the system itself. Errors are detected
and corrected, and permanent faults are located and re-
moved while the system continues to deliver acceptable
service. This goal is accomplished by the use of error de-
tection algorithms, fault diagnosis, recovery algorithms,
and spare resources. They are all integral parts of the fault-
tolerant system, and may be implemented in hardware,
firmware, or software.

In addition to physical faults, system failures are also
caused by design faults and interaction faults [6]. These
classes of faults originate due to the mistakes and over-
sights of humans that occur while they specify, design,
operate, update, and maintain the hardware and software
of computing systems. Fault avoidance and fault removal
(after failure) have been generally employed to cope with
design faults. Some research efforts to apply fault toler-
ance to software design faults have been active since the
early 1970’s; this paper reports the results and current
work on the ““N-version’ approach that has been investi-
gated by the Dependable Computing and Fault-Tolerant
System research group at UCLA.

The N-version approach to fault-tolerant software de-
pends on a generalization of the multiple computation
method that has been successfully applied to the tolerance
of physical faults. The method is reviewed and its appli-
cation to the tolerance of software faults is discussed in
the following section.

II. THE MULTIPLE COMPUTATION APPROACH AND ITS
EXTENSION TO DESIGN DIVERSITY

Multiple computation is a fundamental method em-
ployed to attain fault tolerance. Multiple computations are
implemented by N-fold (N = 2) replications in three do-
mains: time (repetition), space (hardware), and informa-
tion (software). In this section, a shorthand notation is
employed to describe the various possible approaches to
multiple computation. The nonfault-tolerant, or simplex,
system is characterized by one execution (simplex time
1T) of one program (simplex software 1S) on one hard-
ware channel (simplex hardware 1H), and is described by
the notation: 17/1H/1S.

One major distinction in fault-tolerant systems is be-
tween single-channel and multiple-channel architectures.
The former provide only one physical (hardware) set of
components needed for the computation. Error detection
invokes recovery by a retry from a ‘“‘rollback point” sys-
tem state. This program rollback can succeed when the
fault is transient, but will fail for permanent faults, leav-

0098-5589/85/1200-1491$01.00 © 1985 IEEE

1492

ing a safe shutdown of this 27/1H/1S system as the only
acceptable outcome. External repair service is then re-
quired to remove the fault and to return the system to an
operational state. More than one retry is possible, and
there can be multiple computations that use the same hard-
ware and software, but replicate the execution N-fold in
time: NT/1H/1S.

In the N-fold time cases (NT), the consecutive execu-
tions of a computation can employ new copies (identical
replicas) of the program and associated data. A common
practice in coping with system crashes is the loading from
stable backup storage and running of a new copy of the
program and data on the same hardware: 27/1H/2S. A
more sophisticated fault tolerance approach that is, for ex-
ample, used in Tandem computers [9], is the execution of
another copy of the program that resides in a standby du-
plicate hardware channel: 27/2H/2S. It must be noted that
the use of “‘new copies” of a program implies the exis-
tence of a reference program in stable storage from which
the copies are made.

In a multiple-channel architecture that is limited to sim-
plex time (17), multiple computations take place as con-
current executions of N copies of the reference program
on N hardware channels: 17/NH/NS. Examples of such
systems are NASA’s Space Shuttle with N = 4 [48], SRI’s
SIFT system with N = 3 [24], C. S. Draper Lab’s Fault-
Tolerant Multiprocessor with N = 3 [31], and AT&T Bell
Laboratories’ 1ESS central control with N = 2 [14]. It is
evident that N-fold time may be introduced into multiple-
channel architectures to produce additional variations of
multiple computations. The general case is NT/YH/ZS,
with Y channels and Z copies of the program, constrained
by NY = Z.

The systems discussed above attain fault tolerance by
the execution of multiple (N-fold, with N = 2) computa-
tions that have the same objective: to deliver a set of N
results derived from a given set of initial conditions and
inputs. The following two fundamental requirements ap-
ply to such multiple computations:

1) the consistency of initial conditions and inputs for

all N computations must be assured; and

2) areliable decision algorithm that determines a single
decision result from the multiple results must be provided.

The decision algorithm may utilize only a subset of all
N results for a decision; e.g., the first result that passes
an acceptance test may be chosen. It is also possible that
an acceptable decision result cannot be determined, and a
higher level recovery procedure must be invoked. The de-
cision algorithm is often implemented N times—once for
each computation in which the decision result is used. In
this case, only one computation is affected by the failure
of any one implementation, such as a majority voter in
triple-modular redundancy (TMR).

The usual partitioning of faults into ““single fault” and
“multiple fault”’ classes needs to be refined when we con-
sider multiple computations. Fauits that affect only one in
a set of N computations are called simplex faults. A sim-
plex fault does not affect other computations, although it

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 12, DECEMBER 1985

may be either a single or a multiple fault within one chan-
nel. Simplex faults are very effectively tolerated by the
multiple computation approach, as long as input consis-
tency and a reliable decision algorithm are provided.

Faults that affect M out of the N separate computations
are M-plex faults (2 < M < N); they affect M separate
results from the set that is used to obtain the decision re-
sult. Typically, multiple occurrences of faults are divided
into two classes: independent and related. We say that re-
lated M-plex faults are those for which a common cause
that affects M computations exists or is hypothesized. Ex-
amples of common physical causes are: interchannel shorts
or sneak paths, common power supply fluctuations, bursts
of radiation, etc. The effects of related physical faults, i.e.,
the errors caused in the individual computations, are much
more likely to be distinct than identical at the points at
which the decision algorithm is applied.

Another class of related M-plex faults is quite different:
they are design faults due to human mistakes committed
during the design or the subsequent design modifications
of a hardware or software element. All N computations
that employ identical copies of that hardware or software
element are affected by the design fault in the same man-
ner when a given state of the element is reached, and the
resulting errors are all identical at the decision algorithm,
causing an erroneous decision result. Such total suscep-
tibility to design faults is the most serious limitation of the
multiple computation approach as it is currently applied
in fault-tolerant system design.

A potentially effective method to avoid the identical er-
rors that are caused by design faults in multiple compu-
tation systems is to use N independently designed soft-
ware or/and hardware elements instead of identical copies
that were generated from one design. This ““design diver-
sity’’ approach directly applies to the parallel (simplex
time) systems 17/NH/NS, which can be altered to: 1) 17/
NH/NdS, where NdS stands for N-fold diverse software,
as used in N-version programming [5]; 2) 17/NdH/NS,
where NdH stands for N-fold diverse hardware; and 3)
1T/NdH/NdS. The N-fold time (NT) systems have been
implemented as recovery blocks [47], with N sequentially
applicable alternate programs that use the same hardware
channel: NT/1H/NdS. An acceptance test is performed for
fault detection, and the decision algorithm selects the first
set of results that pass the test.

The use of N-version software introduces new ‘‘similar-
ity considerations for multiple results and for errors
caused by M-plex faults. The results of individual versions
often differ within a certain range when different algo-
rithms are used in the diverse designs. Therefore, the de-
cision algorithm may need to determine the decision result
from a set of similar, but not identical, results. Similar
results are defined to be two or more results (good or er-
roneous) that are within the range of variation that is al-
lowed by the decision algorithm; consequently, a set of
similar results is used to determine the decision result.
When two or more similar results are erroneous, they are
called similar errors. If the set of similar errors outnum-

AVIZIENIS: N-VERSION APPROACH TO FAULT-TOLERANT SOFTWARE

bers the set of good (similar) results at a decision point,
then the decision algorithm will arrrive at an erroneous
decision result. For example, two similar errors will out-
weigh one good result in the three-version case, and a set
of three similar errors will prevail over a set of two similar
good results when N = 5. All possible errors caused by
M-plex faults are now classified as either distinct or sim-
ilar, and identical errors form a subset of similar errors.

When design faults occur in M = 2 diverse versions,
the design faults may be either independent or related. An
obvious criterion for discrimination is to designate those
faults that cause similar errors at a decision point as re-
lated, and all others as independent. However, this naive
criterion disregards the nature and origin of the design
faults themselves. For example, it has been observed that
two entirely different design faults have produced a pair
of similar errors [7].

Our choice is to follow the preceding treatment of phys-
ical faults and to consider two (or M > 2) design faults as
potentially related if they cause similar errors at a deci-
sion point. Potentially related faults are considered re-
lated if they are attributed to some common cause, such
as a common link between the separate design efforts. Ex-
amples of a ““common link’’ are: an ambiguous specifi-
cation, a conversation between designers from two efforts,
use of the same faulty compiler, or use of the same erro-
neous programmer’s manual. If a common cause cannot
be identified or hypothesized, the design faults are consid-
ered independent, although the errors they have caused
are similar.

We anticipate situations in which two (or more) pro-
grammers will apparently quite accidentally make the
same mistake. In that case, the preceding definition of re-
lated design faults allows the choice of either continuing
the search for a nonapparent common cause, or consider-
ing the two faults to be independent and only coinciden-
tally identical. This option appears to be a necessary con-
dition at the present stage of our understanding of the
causes of design faults.

III. EvoLuTIiON OF FAULT TOLERANCE IN SOFTWARE

The evolution of fault tolerance in software has followed
two distinct directions. The first direction consisted of the
introduction of special fault detection and recovery fea-
tures into single-version software. The second direction
was the development of multiple-version diverse software
for the purpose of attaining fault tolerance.

Considering single-version software, it is known that the
first generation machine and assembly language programs
already contained ad hoc provisions to detect abnormal
behavior and to signal its presence to the operator. These
fault detection provisions served to detect physical faults
as well as software (design) faults introduced by program-
mers. A programmed time-out counter is a good example
of such a fault detector. The sophistication of software
fault detection increased with the evolution of operating
systems, which took over the monitoring of the behavior
of application programs. A large body of literature has

1493

evolved on the subjects of detection, confinement, and re-
covery from abnormal behavior of single-version soft-
ware. Modularity, system closure, atomicity of actions,
decision verification, and exception handling are among
the key attributes of reliable single-version applications and
system software. It is quite evident that these attributes
remain desirable and advantageous in each version of the
fault-tolerant multiversion software that will be discussed
in the remainder of this paper.

Multiple-version software has remained of little interest
to the mainstream researchers and developers of software
for a relatively long time. Some suggestions of its poten-
tial usefulness had appeared in the early and mid-1970’s
[17], [21], [36], [19]. However, the first suggestion on re-
cord was made by Dr. Dionysius Lardner who, in 1834,
wrote in‘‘Babbage’s calculating engine’” as follows [42]:

“The most certain and effectual check upon errors
which arise in the process of computation, is to cause
the same computations to be made by separate and
independent computers; and this check is rendered
still more decisive if they make their computations
by different methods.”’

" The first long-term systematic investigation of multiple-
version software for fault tolerance was initiated by Brian
Randell at the University of Newcastle upon Tyne in the
early 1970’s [47], [1]. From this research evolved the re-
covery block (RB) technique, in which alternate software
versions are organized in a manner similar to the dynamic
redundancy (standby sparing) technique in hardware. Its
objective is to perform run-time software (as well as hard-
ware) fault detection by an acceptance test performed on
the results delivered by the first version. If the acceptance
test is not passed, recovery is implemented by state res-
toration followed by the execution of an alternate version
on the same hardware (N7/1H/NdS). Recovery is consid-
ered complete when the acceptance test is passed. Several
variations of the RB approach have been recently investi-
gated [3], [11], [25], [30], [35], [50].

Another continuing investigation of multiversion soft-
ware is the N-version programming (NVP) project started
by the author at UCLA in 1975 [4]. N-fold computation
(1T/NH/NdS, or 1T/NdH/NdS) is carried out by using N
independently designed software modules, or “versions,”’
and their results are sent to a decision algorithm that de-
termines a single decision result [5]. Other pioneering in-
vestigations of the multiversion software concept have
been carried out at the KFK Karlsruhe, FRG [22], at the
Halden Reactor Project, Norway [13], and at UC Berkeley
and other organizations in the United States [46].

The fundamental difference between the RB and NVP
approaches is the decision algorithm. In the RB approach,
an acceptance test that is specific to the application pro-
gram being implemented must be provided. In the NVP
approach, the decision algorithm is a generic consensus
algorithm that delivers an agreement/disagreement deci-
sion. Otherwise, both RB and NVP can be implemented
for concurrent or sequential execution depending on the

1494

number of hardware channels available at once. Analytic
models using queuing and Markov modeling techniques
have been developed for the comparison of RB and NVP
techniques with respect to time requirements and reliabil-
ity improvement, allowing for the existence of similar er-
rors in NVP and imperfect acceptance tests in RB [26],
[37].

A number of variations and combinations of the RB and
NVP approaches can be readily identified [2]. First, ac-
ceptance tests on individual versions can be employed to
support the decision algorithms in NVP [33]. Second, fault
detection and exception handling algorithms in individual
hardware channels can help to distinguish physical faults
from design faults. Third, the RB approach can concur-
rently use two (or more) hardware channels, either copied:
(N/2) TI2H/NdS, or diverse: (N/2) T/2dH/NdS. A deci-
sion algorithm can support the acceptance tests, since two
sets of results are made available in parallel, and real-time
constraints can be met as long as one channel remains ac-
ceptable. The general diverse system is NT/YdH/ZdS with
NY = Z, that includes acceptance tests, exception han-
dling, and the detection of physical faults in each channel
to support the decision algorithm. Other diverse systems
result when some features are deleted or diversity is re-
duced.

IV. N-VERSION PROGRAMMING ExXPERIMENTS AT UCLA

N-version programming is defined as the independent
generation of N = 2 software modules, called ‘““versions,”
from the same initial specification [5]. “Independent gen-
eration’”’ means that programming efforts are carried out
by individuals or groups that do not interact with respect
to the programming process. Wherever possible, different
algorithms, programming languages, environments, and
tools are used in each separate effort. The goal of NVP is
to minimize the probability of similar errors at decision
points in an N-fold computation.

The purpose of the initial specification is to state the
functional requirements completely and unambiguously,
while leaving the widest possible choice of implementa-
tions to the N programming efforts. The specification also
prescribes the special features that are needed to execute
the set of N versions as an ‘““‘N-version software unit”” in a
fault-tolerant manner. An initial specification defines: 1)
the function to be implemented by the N-version software
unit; 2) the cross-check points (“‘cc-points’’) at which the
decision algorithm will be applied to the results of each
‘version; 3) content and format of the cross-check vectors
(‘““cc-vectors™) to be generated at each cc-point; 4) the
decision algorithm to be used at each cc-point; and S) the
response to the possible outcomes of decisions. The de-
cision algorithm explicitly states the allowable range of
variation in numerical results, if such a range exists, as
well as any other acceptable differences in the version re-
sults such as extra spaces in text output or other ““cos-
metic” variations.

It is the fundamental conjecture of the NVP approach
that the independence of programming efforts will assure

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 12, DECEMBER 1985

a low probability that residual software design faults will
lead to an erroneous decision by causing similar errors to
occur at the same cc-point in two or more versions. Given
a reasonable choice of cc-points and cc-vectors, the low
probability of similar errors is expected to make N-version
programming an effective method for achieving software
fault tolerance. The effectiveness of the NVP approach
depends on the validity of the conjecture, and an experi-
mental investigation was deemed to be the essential next
step. The initial NVP research effort at UCLA (1975-1978)
addressed two questions: 1) which requirements (e.g.,
good specifications, choice of suitable types of problems,
constraints on the nature of algorithms, timing con-
straints, decision algorithms, etc.) have to be met to make
N-version programming feasible at all regardless of the
cost; and 2) what methods should be used to compare the
cost and the effectiveness of the NVP approach to the two
alternatives: single-version programming and the recov-
ery block approach.

The scarcity of previous results and an absence of for-
mal theories on N-version programming led to the choice
of an experimental approach: to choose some conveniently
accessible programming problems, to assess the applica-
bility of N-version programming, and then to proceed to
generate a set of programs. Once generated, the programs
were executed as N-version software units in a simulated
multiple-hardware system, and the resulting observations
were applied to refine the methodology and to build up the
concepts of N-version programming. The first detailed re-
view of the research approach and a discussion of two sets
of experimental results, using 27 and 16 independently
written programs, was published in 1978 [12].

The preceding exploratory research demonstrated the
practicality of experimental investigation and confirmed
the need for high quality software specifications. As a
consequence, the first aim of the next phase of UCLA re-
search (1979-1982) was the investigation of the relative
applicability of various software specification techniques.
Other aims were to investigate the types and causes of
software design faults, to propose improvements to soft-
ware specification techniques and their use, and to pro-
pose future experiments for the investigation of design
fault tolerance in software and in hardware [33].

To examine the effect of specification techniques on
multiversion software, an experiment was designed in
which three different specifications were used. The first
was written in the formal specification language OBJ [23].
The second specification language chosen was the nonfor-
mal PDL that was characteristic of current industry prac-
tice. English- was employed as the third, or “control,”
specification language since English had been used in the
previous studies [12]. Thirty programmers started the
programming effort, and eighteen programs were deliv-
ered (seven from OBJ, five from PDL, and six from the
English specification). The length of the programs varied
from 217 to 689 PL/1 statements, averaging 392 state-
ments per program.

The problem chosen for the experiment was an ‘‘airport

AVIZIENIS: N-VERSION APPROACH TO FAULT-TOLERANT SOFTWARE

scheduler” program. This database problem concerns the
operation of an airport in which flights are scheduled to
depart for other airports and seats are reserved on those
flights. The problem was originally an example of data-
base system specification [15] and was later used to illus-
trate the use of OBJ [23]. Because the problem is trans-
action oriented, the natural choice of cross-check points
was at the end of each transaction. With the OBJ specifi-
cation as reference, a specification was written in PDL
and another one in English. The OBJ specification was 13
pages long, the English specification took 10 pages, but
PDL required 74 pages to contain the same specification
[32]. The detailed description of the experiment has been
reported in [32], and the main results have been presented
in [33] and [7]. '

A major second generation experiment began in June of
1985. UCLA is cooperating with the University of Illinois,
the University of Virginia, and North Carolina State Uni-
versity in a large-scale experiment sponsored by the NASA
Langley Research Center. Twenty versions of a program
to manage sensor redundancy in an aircraft and spacecraft
navigation system are to be written by September of 1985.
Hypotheses on similar errors have been formulated and
will be validated, and the cost effectiveness and reliability
increase of the N-version approach will be assessed. To
establish a long-term research facility for these second
generation experimental investigations, the DEsign DI-
versity eXperiment system (DEDIX), a distributed soft-
ware supervisor and testbed system at the UCLA Center
for Experimental Computer Science, has been designed
and implemented [8]. A subsequent section of this paper
describes the requirements, design, and implementation of
DEDIX.

V. PrincipAL IsSUES OF N-VERSION PROGRAMMING

The series of N-version programming experiments that
were conducted at UCLA allowed us to identify several
issues that require resolution in order to attain successful
N-version fault tolerance in software. The key problems
of implementing the multiversion software solution are
discussed below.

Initial Specification

The most critical condition for the independence of de-
sign faults is the existence of a complete and accurate
specification of the requirements that are to be met by the
diverse designs. This is the “‘hard core” of this fault tol-
erance approach. Latent defects, such as inconsistencies,
ambiguities, and omissions, in the specification are likely
to bias otherwise entirely independent programming or
logic design efforts toward related design faults. The most
promising approach to the production of the initial speci-
fication is the use of formal, very-high-level specification
languages [38], [44], [39]. When such specifications are
executable, they can be automatically tested for latent de-
fects and serve as prototypes of the programs suitable for
assessing the overall design. With this approach, perfec-
tion is required only at the highest level of specification;

1495

the rest of the design and implementation process as well
as its tools are not required to be perfect, but only as good
as possible within existing resource constraints and time
limits. The independent writing and subsequent compar-
ison of two specifications, using two formal languages, is
the next step that is expected to increase the dependability
of specifications beyond the present limits. Our current
investigation of specification methods is discussed in a
subsequent section.

Independence of Design Efforts

The approach that is employed to attain independence
of design faults in a set of N programs is maximal inde-
pendence of design and implementation efforts. It calls for
the use of diverse algorithms, programming languages,
compilers, design tools, implementation techniques, test
methods, etc. The second condition for independence is
the employment of independent (noninteracting) program-
mers or designers, with diversity in their training and ex-
perience. Wide geographical dispersion and diverse ethnic
backgrounds may also be desirable.

N-Version Execution Support

Implementation of N-version fault-tolerant software re-
quires special support mechanisms that need to be speci-
fied, implemented, and protected against failures due to
physical or design faults. These mechanisms fall into two
categories: those specific for the application program being
implemented, and those that are generic for the N-version
approach. The application-specific class contains the
specifications of: 1) the initial state of the program; 2) the
inputs to be received; 3) the location of cross-check points
(partitioning into modules); 4) the content and format of
the cross-check vector at each cc-point (outputs are in-
cluded here); 5) the algorithms for internal checking and
exception handling within each version; and 6) the time
constraints to be observed by each program module.

The generic class of support mechanisms forms the N-
version execution support environment that includes: 1)
the decision algorithm; 2) assurance of input consistency;
3) interversion communication; 4) version synchroniza-
tion and enforcement of timing constraints; 5) local su-
pervision for each version; 6) the global executive and de-
cision function for the treatment of faulty versions; and 7)
the user interface for observation, debugging, injection of
stimuli, and data collection during N-version execution of
application programs. The nature of the generic support
mechanisms is illustrated in the discussion of the DEDIX
N-version supervisor and testbed system that is described
in the next section.

Protection of the Support Environment

The success of design fault tolerance by means of N-
version software depends on uninterrupted and fault-free
service by the N-version support environment. Protection
against physical faults is provided by the physical distri-
bution of N versions on separate machines and by the im-
plementation of fault-tolerant communication linkages.

1496

The SIFT system [24] and the DEDIX system [8] are suit-
able examples in which the global executive is also pro-
tected by N-fold replication. The remaining problem is the
protection against design faults that may exist in the sup-
port environment itself. This may be accomplished by N-
fold diverse implementation of the support environment.
To explore the feasibility of this approach, the prototype
DEDIX environment is currently undergoing formal spec-
ification. Subsequently, this specification will be used to
generate diverse multiple versions of the DEDIX software
to reside on separate physical nodes of the system. The
practicality and efficiency of the approach remain to be
determined.

Architectural Support

Current hardware architectures were not conceived with
the goal of N-version execution; therefore, they lack sup-
porting instructions and other features that would make
N-version software execution efficient. For example, the
special instructions - ‘‘take majority vote”” and “‘check in-
put consistency” would be very useful. The practical ap-
plicability on N-version software in safety-critical real-time
applications hinges on the evolution of custom-tailored in-
struction sets and supporting architectures.

Recovery of Failed Versions

A problem area that needs to be addressed is the recov-
ery of a failed version at a cc-point in order to allow its
continued participation in N-version execution. Since all
versions are likely to contain design faults, it is critically
important to recover versions as they fail rather than
merely degrade to N-1 versions, then N-2 versions, and so
on to shutdown. Recovery of a given version is difficult
because the other (good) versions are not likely to have
identical internal states; they may differ drastically in in-
ternal structure while satisfying the specification.

Modification of N-Version Software

It is evident that the modification of software that exists
in multiple versions is more difficult. The specification is
expected to be sufficiently modular so that a given modi-
fication will affect only a few modules. The extent to which
each module is affected can then be used to determine
whether the existing versions should be modified accord-
ing to a specification of change, or the existing versions
should be discarded and new versions generated from the
appropriately modified specification. Experiments need to
be conducted to gain insights into the criteria to be used
for a choice.

Assessment of Effectiveness

The usefulness of the N-version approach depends on
the validity of the conjecture that residual software faults
in separate versions will cause very few, if any, similar
errors at the same cc-points. Large-scale experiments need
to be carried out in order to gain statistically valid evi-
dence, and the “‘mail order software’” approach offers sig-
nificant promise. In an “‘international mail order” exper-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 12, DECEMBER 1985

iment, the members of fault tolerance research groups
from several countries will use a formal specification to
write software versions. It is expected that the software
versions produced at widely separated locations, by pro-
grammers with different training and experience who use
different programming languages, will contain substantial
design diversity. In further experiments, it may be possible
to utilize the rapidly growing population of free-lance pro-
grammers on a contractual basis to provide module ver-
sions at their own locations. This approach would avoid
the need to concentrate programming specialists, have a
low overhead cost, and readily allow for the withdrawal of
individual programmers.

Cost Investigations

The generation of N versions of a given program instead
of a single one shows an immediate increase in the cost of
software prior to the verification and validation phase. The
question is whether the subsequent cost will be reduced
because of the ability to employ two (or more) versions to
attain mutual validation under operational conditions. Cost
advantages may accrue because of 1) the faster opera-
tional deployment of new software; and 2) replacement of
costly verification and validation tools and operations by
a generic N-version environment in which the versions val-
idate each other.

VI. THE DEDIX SYSTEM: AN N-VERSION RESEARCH
TooL

In the course of previous experiments at UCLA, it be-
came evident that the usual general-purpose computing
services were poorly suited to support the systematic ex-
ecution, instrumentation, and observation of N-version
fault-tolerant software. In order to provide a long-term re-
search facility for experimental investigations of design
diversity as a means of achieving fault-tolerant systems,
the UCLA Dependable Computing and Fault-Tolerant
System research group has designed and implemented the
prototype DEDIX (DEsign Dlversity eXperiment) system
[8], a distributed supervisor and testbed for multiple-ver-
sion software, at the UCLA Center for Experimental
Computer Science. DEDIX is supported by the Center’s
Olympus Net local network, which utilizes the UNIX-
based LOCUS distributed operating system [45] to oper-
ate a set of 20 VAX 11/750 computers. The prototype DE-
DIX system is discussed in this section. DEDIX illus-
trates the solutions that were chosen for the N-version
software implementation problems identified in the pre-
ceding section. The three following general requirements
were established for DEDIX.

® Transparency: The application programmers are not
required to take care of the multiplicity, and a version must
be able to run in a system with any allowed value of N
without modifications. '

® Distribution: The versions should be able to run on
separate physical sites of a network in order to take ad-
vantage of physical isolation between sites, to benefit from
parallel execution, and to tolerate the crash of a site.

AVIZIENIS: N-VERSION APPROACH TO FAULT-TOLERANT SOFTWARE

USER INTERFACE

VERS. N

vz

®| DEDIX
ouT

Locus Locus

SITE 1 SITEJ SITEN

A A 4 v
ETHERNET

Fig. 1. DEDIX at N sites of Olympus Net.

e Environment: DEDIX is designed to run on the dis-
tributed LOCUS environment at UCLA and must be por-
table to other UNIX environments. DEDIX must be able
to run concurrently with all other normal activities of the
local network.

The DEDIX structure can be considered as a network-
based generalization of SIFT [24] that is able to tolerate
both hardware and software faults. Both have similar par-
titioning, with a local executive and a decision algorithm
at each site that processes broadcast results, and a copy
of the global executive at each site that takes consistent
reconfiguration decisions by majority vote. DEDIX is ex-
tended to allow some diversity in results and in version
execution times. SIFT is a frame synchronous system that
uses periodically synchronized clocks to predict when re-
sults should be available for a decision. This technique
does not allow the diversity in execution times and unpre-
dictable delays in communication that can be found in a
dist ributed N-version environment. Instead, a synchroni-
zation protocol is used in DEDIX which does not make
reference to global time within the system.

The purpose of DEDIX is to supervise and to observe
the execution of N diverse versions of an application pro-
gram functioning as a fault-tolerant N-version software
unit. DEDIX also provides a transparent interface to the
users, versions, and the input/output system so that they
need not be aware of the existence of multiple versions and
recovery algorithms. An abstract view of DEDIX in an N-
site environment is given in Fig. 1. In summary, DEDIX
provides the following services:

¢ it handles communications from the user and distrib-
utes them to all active versions;

¢ it handles requests from the versions to have their re-
sults (cc-vectors) processed, and returns decision results
to the versions and to the user;

® it executes decision algorithms and determines deci-
sion results;

¢ it manages the input and output operations for the
versions; and

¢ it makes reconfiguration and recovery decisions about
the handling of faulty versions.

1497

VERSION LAYER

cC .
Function Vversion J
DECISION AND EXECUTIVE LAYER
Out 7
% Sender Dec1s!pn Glob &»Loc
> Function Executives
In, 1 ! $ 3
SYNCHRONIZAITION LAYER
I 4 v
Sender Receiver Recovery
Control
3 I]
|
TRANSPORT LAYER
3 v v
Sender Receiver Recovery
Control
¥ Locus

Fig. 2. Layers and entities at one site of DEDIX.

The DEDIX system can be located either in a single
computer that executes all versions sequentially, or in a
multicomputer system running one or more versions at
each site. If DEDIX is supported by a single computer, it
is vulnerable to hardware and software faults that affect
the host computer, and the execution of N-version soft-
ware units is relatively slow. In a computer network en-
vironment, the system is partitioned to protect it against
most hardware faults. This has been done by providing
each site with its own local DEDIX software, while an
intersite communication facility is common to all com-
puters. The DEDIX design is suitable for any specified
number N = 2 of sites and versions, and currently accom-
modates the range 2 < N < 20, with provision to reduce
the number of sites and to adjust the decision algorithm
upon: the failure of a version or a site.

The prototpye DEDIX has been designed as a hierarchy
of four layers to reduce complexity and to facilitate the
inevitable modifications. Each site has an identical set of
layers and entities as shown in Fig. 2. The purpose of each
layer is to offer services to the higher layers, shielding
them from details on how those services actually are im-
plemented. The layers, discussed below, are the: transport
layer, synchronization layer, decision and executive layer,
and version layer.

The transport layer handles the communication of mes-
sages between the sites. It serves as the interface of DE-
DIX and the host LOCUS distributed operating system
that manages intersite communication. The layer is in-
tended to assure that messages are not lost, duplicated,
damaged, or misaddressed, and it preserves the ordering
of sent messages. The loss of communication with another
site is reported to the layer above.

The synchronization layer at each site has a sender that
broadcasts local results, and a receiver that collects mes-
sages with the results (cc-vectors) from other sites, using
the services of the transport layer. The collected results
are delivered to the decision function. The execution of

1498

versions at all sites needs to be event-synchronized to en-
sure that only results from corresponding cc-points are
matched. A synchronization protocol has been designed
to provide the service [27]. It ensures that the results that
are supplied to the decision function are from the same
cross-check (cc) point in each version. The versions are
halted until all of them have reached the same cc-point,
and they are not started again until the results are ex-
changed and a decision is made. To be able to detect ver-
sions that are “‘hung up” and to allow slow versions to
catch up, a time-out technique is used by the protocol.
Acknowledgments are employed to verify that each site
has received enough result: to make a decision.

The decision and executive (D&E) layer receives the
cc-vectors from its local version directly and from all other
versions via the synchronization layer, determines the de-
cision result, establishes whether the local version is faulty
or not, and makes recovery decisions. The D&E layer
controls the input/output of the local version, and all ex-
ceptions that are not handled elsewhere are directed to this
layer. This layer has four entities: a sender, a decision
function, and two entities that control the recovery pro-
cess—a local executive and a global executive. The sender
receives the cc-vector result from the local version and
returns the decision result to it after a decision has been
taken. It also executes the disconnection of the local ver-
sion, controls its input and output operations, and handles
communications with both executives.

The decision function determines a single decision re-
sult from the N results of individual versions. DEDIX pro-
vides a generic decision algorithm which may be replaced
by a user’s algorithm provided that the interfaces are pre-
served. This allows application-specific decision algo-
rithms to be incorporated in those cases where the stan-
dard mechanisms are inappropriate. The generic decision
algorithm determines a decision by applying one of three
agreement tests: 1) bit by bir— identical match only; 2)
cosmetic—detecting character string differences caused by
spacing, misspelling, or character substitution; and 3) nu-
meric—integer and real number decisions. Numeric de-
cisions use a median value such that, as long as the ma-
jority of versions are not faulty, the median of all responses
is acceptably close to the desired value. Numeric values
are allowed to differ within some ‘‘skew interval,”” thus
allowing version results to be nonidentical but still useable
in the numeric decision process.

The local executive takes action when the decision func-
tion indicates that the decision result is not unanimous, or
when any other exception is signaled from the local ver-
sion or another layer. The local executive will first try to
recover locally before it either reports the problem to the
global executive or, if it is considered as fatal to the site,
closes down the site. Three classes of exceptions can oc-
cur. Functional exceptions are specified in the functional
description of DEDIX and are independent of the imple-
mentation. Among them are deviations from a unanimous
result, the case when a communication link is discon-
nected, and the case when a cc-vector is completely miss-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 12, DECEMBER 1985

ing. For these exceptions, the local executive will attempt
to keep the site active, possibly terminating the local ver-
sion, while keeping the input/output operating. Implemen-
tation exceptions are dependent on the specific computer
system, language, and implementation technique chosen.
All UNIX signals, such as segmentation faults, process
termination, invalid system call, etc. belong to this class.
Other examples are all the exceptions defined in DEDIX,
such as signaling when a function is called with an invalid
parameter or when an inconsistent state exists. Most of
those exceptions will force an orderly closedown of a site
in order to be able to provide data for analysis. Finally,
there are exceptions generated by the local version. The
local version program may include provisions for excep-
tion handling and some of the exceptions may not be re-
coverable within the version. These exceptions are sent to
the local executive which will terminate the local version
while keeping the site alive.

The global executive collects error reports from the de-
cision function and the local executive, exchanges error
reports with every other active global executive, and de-
cides on a new configuration based on all error reports.
The global executive is invoked after a preset number of
exchanges of results (i.e., number of decisions) has taken
place. The number of exchanges is maintained as a con-
sistent value at all sites. Thus, by referring to this number,
it is possible to ensure that all correctly working sites will
exchange error reports and decide on a reconfiguration at
the same state of computation. This number is kept con-
sistent by the synchronization protocol.

The version layer interfaces the Jth (local) version with
the DEDIX system and alters the variables in the local cc-
vector that disagree with the decision result produced by
the decision function. The function doing the interfacing
is called the cross-check, or CC, function since it is called
at each cc-point. Pointers to the results to be corrected
are sent as parameters to this function. The CC function
transfers the version representation of results into the DE-
DIX cc-vector format, so that the internal representation
of a cc-vector in DEDIX is hidden to the version program.
The CC function also returns the decision result to the
version.

The user interface of DEDIX allows users to debug the
system as well as the versions, to monitor the operations
of the system, to apply stimuli to the system, and to collect
data during experiments. Several commands are provided.
The break command enables the user to set breakpoints.
At a breakpoint, DEDIX stops executing the versions and
allows entering of commands. The remove command de-
letes breakpoints set by the break command. The continue
command resumes execution of the versions at a break-
point. The user may terminate execution using the quit
command. The user can examine the current contents of
the message passing through the transport layer by using
the display command. Since every message is logged, the
user may also specify conditions in the display command
to examine any message logged previously. The user can
also examine the internal system states by using the show

AVIZIENIS: N-VERSION APPROACH TO FAULT-TOLERANT SOFTWARE

command, e.g., to examine the breakpoints which have
been set, the decision results, etc. The user can inject
faults to the system by changing the system states, e.g.,
the cc-vector, by using the modify command. The user in-
terface gathers data and collects statistics of the experi-
ments. Every message passing the transport layer is logged
into a file with a time stamp. This enables the user to do
postexecution analysis or even replay the experiment. Sta-
tistics such as elapsed time, system time, number of cc-
points executed, and their decision outcomes are also col-
lected.

The prototype DEDIX system has been operational
since early 1985. Several modifications have been intro-
duced since then—most of them intended to improve the
speed of the execution of N-version software. The first
major test of DEDIX will be experimentation with the set
of about 20 programs produced by the NASA-sponsored
four-university project discussed in Section IV. At the
same time, a formal specification effort for DEDIX is
being initiated as described in the following section.

VII. DIRECTIONS OF CURRENT RESEARCH

The N-version software research at UCLA has the fol-
lowing two major long-term objectives:

1) to develop the principles of implementation and ex-
perimental evaluation of fault-tolerant N-version software
units; and '

2) to devise and evaluate supervisory systems for the
execution of N-version software in various environments.

The N-version implementation studies address the prob-
lems of: 1) methods of specification; 2) the verification of
specifications; 3) the assurance of independence in de-
signs; 4) partitioning and matching, i.e., good choices of
cc-points and cc-vectors for a given problem; 5) the means
to recover a failed version; 6) efficient methods of modi-
fication for N-version units; 7) evaluation of effectiveness
and of cost; and 8) the design of experiments.

The research concerned with the supervisory systems
deals with: 1) the functional structure of supervisors; 2)
fault-tolerant supervisor implementation, including toler-
ance of design faults; 3) instrumentation to support N-ver-
sion software experiments; 4) efficient implementation,
including custom hardware architectures to support real-
time execution; and 5) methods of supervisor evaluation.

Our past experience has pinpointed an effective speci-
fication as the keystone of success for N-version software
implementation [7]. Significant progress has occurred in
the development of formal specification languages since
our previous experiments. Our current goal is to compare
and assess the ease of use by application programmers of
several formal program specification methods, including
the OBJ specification language developed at UCLA [23]
and used in our previous experiment; the Clear specifi-
cation language developed at the University of Edinburgh
and SRI International [10]; the Larch family of specifi-
cation languages developed at M.I.T. and the Xerox Re-
search Center [28]; the Ina Jo™ specification language
developed at SDC [34]; the Z specification language de-

1499

veloped at Oxford University [29], and also Prolog and
Concurrent Prolog as methods of formal specification.

The comparison focuses on several aspects of applica-
bility: 1) the purpose and scope (problem domain); 2)
completeness of development; 3) quality and extent of
documentation; 4) existence of support environments; 5)
executability and suitability for rapid prototyping; 6) pro-
visions to express timing constraints and concurrency; 7)
methods of specification for exception handling; 8) exten-
sibility to specify the special attributes of fault-tolerant
multiversion software. The goal is to choose two or more
specification languages for an experiment in the design of
fault-tolerant multiversion software. The experiment has
two major elements: first, it is an attempt to attain con-
current verification of two specifications by symbolic ex-
ecution with mutual interplay, that is, a ‘“‘two-version”
specification; and second, it provides an assessment of the
ease of use of the specifications by application program-
mers in an N-version software experiment. It is conjec-
tured that the application of two diverse formal specifica-
tions will help to eliminate residual specification faults and
further increase the dependability of the specifications.

The next step in the development of DEDIX is the for-
mal specification of parts of the current DEDIX prototype
that are implemented in C, beginning with the synchro-
nization layer, the decision function, and the local and
global executives. The specification is intended to provide
an executable version of the DEDIX supervisory operating
system. This functional specification is expected to pro-
vide a starting point for a implementation for real-time
systems. Furthermore, the specification can be indepen-
dently reimplemented in C for the use of multiversion soft-
ware techniques in the implementation of different sites of
DEDIX. The goal is a DEDIX system that supports N-
version application programs and which is itself diverse in
its design at each site.

In the experimental evaluation of the N-version ap-
proach, the immediate goal is extensive experimentation
with about 20 programs to be generated during the sum-
mer of 1985 by the four-university effort discussed in Sec-
tion IV. For the next step, plans are being prepared for the
“international mail order” experiment as discussed in
Section V of this paper.

VIII. CoNncLUSION: SOME POTENTIAL LONG-RANGE
ADVANTAGES OF DESIGN DIVERSITY

The most immediate and direct opportunity to apply N-
version software is offerred by multiple-channel systems
that incorporate very complete tolerance of physical faults
such as SIFT [24]. The hardware resources and some ar-
chitectural features that can support N-version software
are already present, and the implementation requires an
extension of the existing physical fault tolerance mecha-
nisms. Furthermore, hardware diversity can be introduced
by choosing functionally compatible hardware building
blocks from different suppliers for each channel.

A more speculative, and also more general, application
of N-version software is its partial substitution for current

1500

software verification and validation (V&V) procedures.
Instead of extensive preoperational V&V of a single pro-
gram, two independent versions can be executed in an op-
erational environment, completing V&V concurrently with
productive operation. The increased cost of producing the
software is compensated for by a reduction of the V&V
time and an earlier deployment. Another advantage may
be a decrease in the amount of human effort and complex-
ity of software tools needed for the very thorough V&V
effort. Des1gn faults in the V&V software are also less
critical. The user can take the less efficient (“backup’)
version off line when adequate reliability of operation is
reached, and then bring it back for special operating con-
ditions that require greater reliability assurance, espe-
c1ally after' modifications or after maintenance. A poten-
tial system lifetime cost reduction exists because a duplex
diverse system (possibly operating in the recovery block
mode) can support continued operation after latent design
faults are uncovered, providing very high availability. The
cost of fault analysis and elimination also might be re-
duced due to the lesser urgency of the repair actions.

The p0531ble use of a “mail-order” approach to the pro-

duction of two or more versions of software modules sug-
gests an intriguing long-range benefit of the N-version ap-
proach in software. Given a formal specification that
includes a set of single-version acceptance tests, the ver-
sions of software can be written by programmers working
at their own preferred times and locations, and using their
own personal computing equipment. Two potential advan-
tages are as follows.
o The overhead cost of programming that accrues in
highly controlled professional programming environments
could be drastically reduced through this approach that
allows free play to individual initiative and -utilizes low-
cost home facilities.

® The potential of the rapidly growing number of free-
lance programmers to serve as ‘‘mail-order” program-
mers would be tapped through this approach. For various
reasons, many individuals with programming talents can-
not fill the role of a professional programmer as defined
by today’s rigorous approaches to quality control and the
use of centralized sites during the programming process,
but they may well succeed as independent programming
contractors for N-version implementations.

Finally, an important reliability and availability advan-
tage through design diversity may be expected for systems
that use VLSI circuits. The growing complexity of VLSI
circuits, with 500 000 gates/chip available today and 1
million gates/chip predicted for the near future, raises the
probability of design faults since a complete verification
of the design is very difficult to attain. Furthermore, the
desxgn -automation and verification tools themselves are
subje;ct to undiscovered design faults. Even with multi-
channel fault-tolerant system designs, a single design fault
may require the replacement of all chips of that type since
on-chip modifications are impractical. Such a replacement
would be a costly and time-consuming process. On the
other hand, use of N versions of VLSI circuits in a mul-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 12, DECEMBER 1985

tiple-channel design does allow the continued use of chips
with design faults, as long as their errors are not similar
at the circuit boundaries where the decision algorithm is
applied.

Design diversity may enable dependable operation
throughout the lifetime of a multiple-channel system with-
out a single chip having a perfect design, and without any
single perfect program executing on those chips. The
building of the first system of this kind will be a milestone
in the evolution of fault-tolerant systems, and current re-
sults support the prediction that such systems should be in
service by the year 2000.

ACKNOWLEDGMENT

Over the past several years, this research has been sup-
ported by the National Science Foundation under Grants
MCS-72-03633, MCS-78-18918, and MCS 81-21696, by the
Office of Naval Research under Contract N0014-79-C-
0866, and by a research grant from the Battelle Memorial
Institute. Current support is provided by a grant from the
Advanced Computer Science Program of the Federal
Aviation Administration. The major contributions to ex-
perimental research have been made by L. Chen and J. P.
J. Kelly. The principal designers of the DEDIX system are
P. Gunningberg, L. Strigini, P. Traverse, K.-S. Tso, and
U. Voges. Thanks are due to T. Anderson and J.-C. Laprie
for their thoughtful comments on this paper.

REFERENCES

[1] T. Anderson and P. A. Lee, Fault Tolerance, Principles and Prac-
tice. Englewood Cliffs, NJ: Prentice-Hall, 1981, pp. 249-291.

[2] T. Anderson, “Can design faults be tolerated?” Fehlertolerierende
Rechensysteme in Proc. 2nd GI/NTG/GMR Conf. Bonn, West Ger-
many, Sept. 1984, IFB vol. 84, Springer-Verlag, pp. 426-433.

[3] T. Anderson, D. N. Halliwell, P. A. Barrett, and M. R. Moulding,
“An evaluation of software fault tolerance in a practical system,” in
Dig. 15th Ann. Int. Symp. Fault-Tolerant Comput., Ann Arbor, MI,
June 19-21, 1985, pp. 140-145.

[4] A. AviZienis, “Fault tolerance and fault intolerance: Complementary
approaches to reliable computing,” in Proc. 1975 Int. Conf. Rel. Soft-
ware, Los Angeles, CA, Apr. 21-23, 1975, pp. 458-464.

[5] A. AviZienis and L. Chen, ““On the implementation of N-version pro-
gramming for software fault tolerance during execution,” in Proc.
COMPSAC 77, 1st IEEE-CS Int. Comput. Software Appl. Conf.. Chi-
cago, IL, Nov. 8-11, 1977, pp. 149-155.

[6] A. AviZienis, ‘“Fault tolerance: The survival attribute of digital sys-

‘ tems,” Proc. IEEE, vol. 66, pp. 1109-1125, Oct. 1978.

[7]1 A. Avizienis and J. Kelly, “‘Fault tolerance by design diversity: Con-
cepts and experiments,” Computer, vol. 17, no. 8, pp. 67-80, Aug.
1984.

[8] A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Trav-

erse, K. S. Tso, and U. Voges, “The UCLA DEDIX system: A dis-

tributed testbed for multiple-version software,” in Dig. I5th Annu.

Int. Symp. Fault-Tolerant Comput., Ann Arbor, MI, June 19-21, 1985,

pp. 126-134.

J. F. Bartlett, ““A ‘NonStop’ operating system,”” in Proc. Hawaii Int.

Conf. Syst. Sci., Honolulu, HI, Jan. 5-6, 1978, pp. 103-119; reprinted

in D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Re-

liable System Design. Bedford, MA: Digital Press, 1982, pp. 453~

460.

[10] R. M. Burstall and J. A. Goguen, ““An informal introduction to spec-
ifications using CLEAR,” in The Correctness Problem in Computer
Science, R. Boyer and H. Moore, Eds. New York: Academic, 1981,
pp. 185-213.

[11] R. H. Campbell, K. H. Horton, and G. G. Belford, “‘Simulations of
a fault-tolerant deadline mechanisms,” in Dig. 9th Annu. Int. Symp.
Fault-Tolerant Comput., Madison, WI, June 1979, pp. 95-101.

[9

i

AVIZIENIS: N-VERSION APPROACH TO FAULT-TOLERANT SOFTWARE

[12] L. Chen and A. Avizienis, ‘‘N-version programming: A fault toler-
ance approach to reliability of software operation,” in Dig. 8th Annu.
Int. Conf. Fault-Tolerant Comput. (FTCS-8), Toulouse, France, June
21-23, 1978, pp. 3-9.

[13] G. Dahll and J. Lahti, ‘‘Investigation of methods for production and
verification of highly reliable software,”” in Proc. IFAC Workshop
SAFECOMP 1979, Stuttgart, Germany, May 16-18, 1979.

[14] R. W. Downing, J. S. Nowak, and L. S. Tuomenoksa, ““No. 1 ESS
maintenance plan,” Bell Syst. Tech. J., vol. 43, no. 5, pt. 1, pp. 1961-
2019, Sept. 1964.

[15] H. Ehrig, H. Kreowski, and H. Weber, ‘““Algebraic specification
schemes for data base systems,” in Proc. 4th Int. Conf. Very Large
Data Bases, West Berlin, Germany, Sept. 13-15, 1978, pp. 427-440.

[16] ‘“Information processing systems—Reliability and requirements,” in
Proc. East. Joint Comput. Conf., Washington, DC, Dec. 8-10, 1953.

[17] W. R. Elmendorf, ‘“‘Fault-tolerant programming,” in Proc. 1972 Int.

Symp. Fault-Tolerant Comput., Newton, MA, June 19-21, 1972, pp.

79-83.

R. R. Everett, C. A. Zraket, and H. D. Benington, ‘“SAGE-a data-

processing system for air defense,” in Proc. East. Joint Comput.

Conf., Washington, DC, Dec. 1957, pp. 148-155.

M. A. Fischler, O. Firshein, and D. L. Drew, “Distinct software: An

approach to reliable computing,”” in Proc. 2nd USA-Japan Comput.

Conf., Tokyo, Japan, Aug. 26-28, 1975, pp. 573-579.

G. C. Gilley, Ed., Dig. 1971 Int. Symp. Fault-Tolerant Comput. , Pas-

adena, CA, Mar.-1-3, 1971.

E. Girard and J. C. Rault, ““A programming technique for software

reliability,” in Proc. 1973 IEEE Symp. Comput. Software Rel., New

York, Apr. 30-May 2, 1973, pp. 44-50.

L. Gmeiner and U. Voges, ‘‘Software diversity in reactor protection

systems: An experiment,” in Proc. IFAC Workshop SAFECOMP 1979,

Stuttgart, Germany, May 16-18, 1979, pp. 75-79.

J. A. Goguen and J. J. Tardo, ““An introduction to OBJ: A language

for writing and testing formal algebraic program specifications,’ in

Proc. Specific. Rel.-Software, Cambridge, MA, Apr. 3-5, 1979, pp.

170-189.

J. Goldberg, ““SIFT: A provable fault-tolerant computer for aircraft

flight control,” in Inform. Processing 80 Proc. IFIP Congr., Tokyo,

Japan, Oct. 6-9, 1980, pp. 151-156.

S. T. Gregory and J. C. Knight, ““A new linguistic approach to back-

ward error recovery,” in Dig. 15th Annu. Int. Symp. Fault-Tolerant

Comput., Ann Arbor, M1, June 19-21, 1985, pp. 404-4009.

A. Grnarov, J. Arlat, and A. Avizienis, “On the performance of soft-

ware fault tolerance strategies,”” in Dig. 10th Int. Symp. Fault-Toler-

ant Comput., FTCS-10, Kyoto, Japan, Oct. 1-3, 1980, pp. 251-253.

P. Gunningberg and B. Pehrson, ““Protocol and verification of a syn-

chronization protocol for comparison of results,” in Dig. I5th Annu.

Int. Symp. Fault-Tolerant Comput., Ann Arbor, MI, June 19-21, 1985,

pp. 172-177.

J. V. Guttag and.J. J. Horning, ““An introduction to the Larch shared

language,” in Inform. Processing '83 Proc. IFIP Congr., Paris,

France, Sept. 19-23, 1983, pp. 809-814.

I. J. Hayes, ““Applying formal specification to software development

in industry,” IEEE Trans. Software Eng., vol. SE-11, pp. 169-178,

Feb. 1985.

H. Hecht, ‘‘Fault-tolerant software,’’ IEEE Trans. Rel., vol. R-28, pp.

227-232, Aug. 1979.

[31] A. L. Hopkins, Jr., T. B. Smith, III, and J. H. Lala, “FTMP—A
highly reliable fault-tolerant multiprocessor for aircraft,” in Proc.
IEEE, vol. 66, pp. 1221-1239, Oct. 1978.

[32] J. P. J. Kelly, “Specification of fault-tolerant multi-version software:
Experimental studies of a design diversity approach, Dep. Comput.
Sci., Univ. California, Los Angeles, Tech. Rep. CSD-820927, Sept.
1982.

[33] J. P. J. Kelly and A. Avizienis, ““A specification-oriented multi-ver-
sion software experiment,”’ in Dig. I13th Annu. Int. Symp. Fault-Tol-
erant Comput. (FTCS-13), Milano, Italy, June 28-30, 1983, pp. 120-
126.

[34] R. A. Kemmerer, “Testing formal specifications to detect design er-
rors,”” IEEE Trans. Software Eng., vol. SE-11, pp. 32-43, Jan. 1985.

[35] K. H. Kim, “Distributed execution of recovery blocks: Approach to
uniform treatment of hardware and software faults,” in Proc. IEEE
4th Int. Conf. Distributed Comput. Syst., San Francisco, CA, May
14-18, 1984, pp. 526-532.

[36] H. Kopetz, “‘Software redundancy in real time systems,” in Inform.
Processing 74 Proc. IFIP Congr., Stockholm, Sweden, Aug. 5-10,

1974, pp. 182-186.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

1501

[37] J.-C. Laprie, ‘“‘Dependability evaluation of software systems in op-
eration,” IEEE Trans. Software Eng., vol. SE-10, pp. 701-714, Nov.
1984.

[38] B. H. Liskov and V. Berzins, ““An appraisal of program specifica-
tions,” in Research Directions in Software Technology, P. Wegner,
Ed. Cambridge, MA: M.L.T. Press, 1979, pp. 170-189.

[39] P. M. Melliar-Smith, ““System specifications,” in Computing Systems
Reliability, T. Anderson and B. Randell, Eds. New York: Cam-
bridge University Press, 1979, pp. 19-65.

[40] B. Meyer, ““A system description method,”” in Int. Workshop Models
and Languages for Software Specification and Design, B. G. Babb,
II, and A. Mili, Eds. Orlando, FL, Mar. 1984, pp. 42-46.

[41] E. F. Moore and C. E. Shannon, ‘'Reliable circuits using less reliable
relays,” J. Franklin Inst., vol. 262, no. 9 and 10, pp. 191-208 and
281-297, Sept.-Oct. 1956.

[42] P. Morrison and E. Morrison, Eds., Charles Babbage and His Cal-
culating Engines. New York: Dover, 1961, p. 177.

[43] J. Oblonsky, “A self-correcting computer,” in Digital Information
Processors, W. Hoffman, Ed. New York: Interscience, 1962, pp.
533-542.

[44] D. L. Parnas, ‘““The role of program specification,” in Research Di-
rections in Software Technology, P. Wegner, Ed. Cambridge, MA:
M.LT. Press, 1979, pp. 364-370.

[45] G. Popek er al., “LOCUS—A network transparent, high reliability
distributed system,” in Proc. 8th Symp. Operating Syst. Principles,
Dec. 1981, pp. 169-177.

[46] C. V. Ramamoorthy ez al., ““Application of a methodology for the

development and validation of reliable process control software,” IEEE

Trans. Software Eng., vol. SE-7, pp. 537-555, Nov. 1981.

B. Randell, “System structure for software fault tolerance,” IEEE

Trans. Software Eng., vol. SE-1, pp. 220-232, June 1975.

J. R. Sklaroff, ‘‘Redundancy management technique for space shuttle

computers,’’ IBM J. Res. Develop., vol. 20, pp. 20-28, Jan. 1976.

J. Von Neumann, “‘Probabilistic logics and the synthesis of reliable

organisms from unreliable components,’’ in Automata Studies, C. E.

Shannon and J. McCarthy, Eds. Princeton, NJ: Princeton University

’

[47]
[48]

[49]

Press, Ann. Math. Studies, 1956, no. 34, pp. 43-98.

H. O. Welch, “Distributed recovery block performance in a real-time
control loop,” in Proc. Real-Time Syst. Symp., Arlington, VA, 1983,
pp. 268-276.

[50]

Algirdas Avizienis (S’55-M’56-F'73) was born
in Kaunas, Lithuania, in 1932. He received the
B.S., M.S., and Ph.D. degrees, all in electrical
engineering, from the University of Illinois, Ur-
bana-Champaign, in 1954, 1955, and 1960, re-
spectively.

He has recently completed three years of ser-
vice as Chairman of the Department of Computer
Science, University of California, Los Angeles,
where he has served on the faculty since 1962. He
also directs the UCLA Dependable Computing and
Fault-Tolerant System research group that he established in 1972. Current
projects of the group include design diversity for the tolerance of design
faults, faults tolerance in distributed systems, and fault-tolerant supercom-
puter architectures. From 1956 to 1960 he was associated with the Digital
Computer Laboratory, University of Illinois, as a Research Assistant and
Fellow participating in the design of the Illiac II computer. From 1960 to
1973 he directed research on fault-tolerant spacecraft computers at the Jet
Propulsion Laboratory, California Institute of Technology, Pasadena. This
effort resulted in the construction and evaluation of the experimental JPL
STAR (self-testing-and-repairing) computer, for which he received a U.S.
Patent in 1970. A paper that described the JPL STAR computer won the
Best Paper selection of the IEEE TRANSACTIONS ON COMPUTERS in 1971.

Dr. AviZzienis was elected Fellow of IEEE for his pioneering work in
fault-tolerant computing. and also received the NASA Apollo Achievement
Award, the Honor Roll of the IEEE Computer Group, the AIAA Informa-
tion Systems Award, the NASA Exceptional Service Medal, and the IEEE
Computer Society Technical Achievement Award. As a member of the IEEE
Computer Society, he founded and was the first Chairman of the Technical
Committee on Fault-Tolerant Computing (1969-1973) as well as the Gen-
eral Chairman of the First International Symposium on Fault-Tolerant
Computing in 1971. He also served for four years as a member of the Com-
puter Society Governing Board. Since 1980 he has been the first Chairman
of Working Group 10.4 on ‘“‘Reliable Computing and Fault Tolerance” of
the International Federation for Information Processing.

