What is *Good Systems Research?*

Liviu Iftode
Rutgers University
What is Systems Research?

- **Broad definition**: all core components of a computer system
 - computer architecture, operating system, languages and compilers, networking, fault-tolerance, systems security

- **Narrow definition**
 - operating systems and distributed systems

- **Challenging research field**
 - Prototype implementation and evaluation
 - Large teams (see SOSP’09)
 - A lot of “hidden work”
 - Boring sometime

Is this computer science or engineering?
A Changing Research Field

- Two driving forces
 - new technologies
 - new applications
- Perspectives shift
 - performance & scalability
 - reliability, availability and survivability
 - maintainability
 - manageability
 - security
 - usability
Systems Research Questions

- What drives systems research towards success or failure?
- Where do novel ideas come from and when?
- What makes systems research results last longer?
- How to anticipate next “fashion” in systems?
Evolution of Research Themes

- UNIX
- Parallel systems
- Distributed and cluster-based systems
- Internet systems
- Storage systems
- Peer-to-Peer systems
- Embedded/Sensor systems
- Virtual machines
- Transactional memory
- Systems for multi-core processors
- Pervasive/Ubiquitous/Cyber-Physical systems
- Cloud computing systems
Talk Roadmap

- Retrospective view of past 10 editions of the Symposium on Operating Systems Principles (SOSP)
- Discuss
 - main topics
 - selected papers
 - lessons to take away
 - examples of good/bad systems work
 - they are personal opinions
Ten SOSP Conferences

- SOSP’91, Pacific Grove, CA
- SOSP’93, Asheville, NC
- SOSP’95, Copper Mountain, CO
- SOSP’97, Saint-Malo, France
- SOSP’99, Kiawah Island, SC
- SOSP’01, Chateau Lake Louise, Canada
- SOSP’03, Bolton Landing, NY
- SOSP’05, Brighton, UK
- SOSP’07, Stevenson, WA
- SOSP’09, Big Sky, MT
Main topic: File systems
 ◦ Log-Structured File System
 ◦ Semantic File Systems
 ◦ Coda

On the rise:
 ◦ Multi-threading: Scheduler Activations
 ◦ Multiprocessors: Munin (software DSM)
 ◦ Real time/Multimedia

New problems:
 ◦ Networking: Automated Reconfiguration
 ◦ Security: Authentication
 ◦ Reliability: Replication in File Systems
Log-Structured File System (LFS)

- **Problem:**
 - More memory -> larger caches -> disk traffic dominated by writes
 - Writes are synchronous and dominated by small accesses (metadata) -> slow

- **Solution:**
 - Buffer file changes together (data and metadata) and write them all in a single large disk write (log)

- **Advantages:**
 - Fast (practically eliminates the seek operation)
 - Simple recovery

- **Secondary issues:**
 - How to locate file blocks
 - How to manage the free space
LFS -
An Example of Good Systems Research

- Driven by awareness of the technology trend
- A radical depart from traditional approach
- Maintains compatibility with traditional approach
- Good model analysis
- Solid implementation and evaluation
- Long lasting impact (see SOSP’09)
Problem:
- Mobile computing causes disconnections
- File system should remain usable in the presence of disconnections

Basic Idea
- Availability more important than consistency

Solution
- Cache whole files in advance (best-effort hoarding)
- Emulate server at client when disconnected
- Reintegration upon reconnection: resolve conflicts

Advantage
- Simple, feasible, usable
- Addresses the common case (no file sharing)
Real problems but too complex solutions

- **Scheduler Activations**
 - Problem: both user-level and kernel-level threads have limitations
 - Solution: a new kernel interface for user-level threads

- **Munin**: the first release-consistency software DSM
 - Problem: too much false sharing due to large coherence granularity
 - Solution: convince programmer to accept a relaxed consistency model in order to get acceptable performance
SOSP’91 Summary

• New directions triggered by new technologies:
 ◦ memory capacity is increasing
 ◦ mobility

• Main application domain (high-performance computing) is offered too complex solutions
 ◦ scheduler activations
 ◦ release-consistency software DSM
Interesting new problems
- Make networking fast using *Fbufs*
- Models for distributed systems: *Limits of causality and total ordered communication*
- *Location information in ubiquitous computing*
Main topic: OS structure and performance
- Exokernel and SPIN
- Impact of Architecture on OS Performance

On the rise:
- Reliability: Hypervisor, Hive, Logged VM
- Mobility: Bayou

Still of interest
- File systems: xFS, Informed Prefetching and Caching
- Distributed memory: Global Memory, CRL

Follow-ups
- Weak connectivity

New problems
- User-level communication: U-Net
- 64-bit address spaces
New OS structures and OS performance

- **Problem**
 - OS has become too big, rigid and hard to manage
 - Performance does not increase with raw hardware performance

- **SOSP’95 debate**
 - Liedtke: Micro-kernel is fine, just needs a good implementation
 - Kashooek: *Exokernel* - Nano-kernels with application-controlled resource management
 - Bernshad: *SPIN* - Safe extensibility through downloadable modules written in a type-safe language

- **What happened after**
 - Complex solutions with hardly feasible assumptions
 - Influence on future OS design happened but not clear how much
Research on OS reliability on the rise

- **Problems**
 - OS often fail, how to make applications survive?
- **Papers anticipated the VMM research (a decade later)**
- **Hypervisor-based fault-tolerance**
 - Interpose a VM software layer between hardware and OS
 - Log non-deterministic events to mirror state of a primary computer onto a backup
 - Continued a decade later with the ReVirt but applied to intrusion analysis
- **Hive**
 - Fault-containment using a cellular OS
 - Better resource allocation
 - A decade later: VMware Inc
OS Research for Cluster Computing

- OS research influenced by cluster computing demands for performance and programmability
 - TCP/IP: too heavy for high-performance interconnects
 - Message-based programming: too difficult for large scale

- User-level communication: U-Net
 - Simple and efficient but requires RDMA support
 - Today: Infiniband for network storage

- CRL software DSM and global memory
 - Make it simple: no relaxed consistency
 - Still did not make it
When it is too much complexity

- **xFS**
 - A completely decentralized distributed file system
 - Wonderful engineering work

- **Bayou**
 - Eventual consistency using an anti-entropy protocol for update propagation
 - Automatic resolution of update conflicts
 - Why did Coda and not Bayou survive?
Concern about OS structure and performance

Research in OS reliability anticipates new challenges: fault isolation and containment (SOSP’07, SOSP’09)

Cluster computing only half-way successful in OS research

Research in mobility and file systems propose too complex solutions

Follow-up on your prior research may not be a bad idea
SOSP’97

- On the rise
 - OS support for Internet services: BASE instead of ACID, Security in Java
 - Real-time scheduling for multimedia
 - Application Adaptation for Mobility: Agile

- Still around
 - Running commodity OSes on multiprocessors: Disco
 - Software DSM: Shasta, Cashmere
 - Distributed file systems: Frangipani
 - OS performance profiling

- New problems:
 - Decentralized information flow-control
 - Dynamic data race detection: Eraser

- Follow-up
 - Scalability in Exokernel
 - Flexible update propagation in Bayou
New Research Problems

- Decentralized Information Flow Control
 - Privacy becomes a concern in client-server interaction
 - How to share information among systems with mutual distrust
- Detection of data races in multithreaded programs
 - Bugs caused by programming error to follow a locking discipline
 - Exposure depends on scheduling non-determinism
 - Notorious hard to detect, reproduce, locate and eliminate
 - Race-freedom not enough for correctness: atomicity also necessary (see ASPLOS’06)
- Both papers prevent programming errors to cause damages, hot field today
The Internet changes the OS

- Internet services require OS changes
 - Problem:
 - ACID (atomicity, consistency, isolation, durability) data semantics is hard to support and not always required
 - Availability is more important
 - Solution
 - Relax data semantics for better scalability
 - Optimistic approach, supports partial failures
 - BASE (basically available, soft state, eventual consistency)
- Internet Services: significant impact on OS research
 - LRP, Scout-OS, LARD, IO-Lite, Resource Containers
 - Security
SOSP’97 Summary

- Internet service applications are about to become the next main application domain
- High-performance computing makes its last strong appearance in OS research (two DSM papers!)
- A slowly but steadily emerging field: detection of software bug (still present at SOSP’09)
Main topic: Internet Services
- Availability & Scalability: Porcupine
- Negative result: Cooperative web proxy caching
- Distributed VM for networked computers
- Soft-timers for network processing

On the rise
- Security: Separating key management from FS security
- Networking: Intentional Naming System, Click

Still there
- User errors: When to forget in Elephant FS
- Real time OS issues

New
- Energy: Adaptation for mobile applications

Follow-up
- Resource management in Cellular Disco
New Research Problems

- The email is important
- Battery lifetime is also important: adapt applications
- User mistakes must be addressed by the OS
 - *Elephant*: Let system decide when/what to delete
- Interrupts are expensive for network servers
 - *Use soft-timers*
- Security for global file systems
 - *SFS*: Self-certifying pathnames eliminate need for key management
- Naming in dynamic and mobile networks
 - *INS*: route messages by names
- Flexible network routers
 - *Click*: implement routers in software
Why researching the email?

- **Email is important**
 - Real demand
- **Email is hard**
 - Write intensive
 - Low locality
- **Email is easy**
 - Well defined API
 - Large parallelism
 - Weak consistency
Main topic: Peer-to-Peer and Overlay Networks
- P2P storage systems: PAST, CFS
- Resilient Overlay Networks (RON)

On the rise
- Software Bugs: Bugs as Inconsistent Behavior, OS Errors

Still around
- Internet Services: Continuous Consistency, Event-Driven Programming
- OS adaptation: Gray-Box
- File systems and networking: Low-bandwidth Network FS

New problems:
- Energy conservation in hosting centers
- Sensor Networks: Low Level Naming

Follow-ups
- Privacy among untrusted hosts: Secure Programming Partitioning
P2P “hijacked” the OS research

- Decentralized storage systems
 - Main properties: scalable, highly available
 - Use scalable routing and lookup substrates (*Pastry, Chord*)
 - What is the OS problem they solve?

- **Resilient Overlay Networking (RON)**
 - Problem: Internet routing problem
 - Solution: Application-layer overlay on top of IP
 - Advantage claim: more resilient than IP routing
 - What is the OS problem?

- Are sensor networks becoming the next “hijacker”?
Practical Intellectual Challenges

- Concurrency programming debate:
 - *Seda*: Threads or Staged Event-Driven?
 - Event-driven manages load better
 - Practical

- How to transfer file over a low-bandwidth connection?
 - Exploit similarities between files and file versions
 - Avoid sending data blocks over the network if they are already in cache at server/client
...and Less Practical Intellectual Challenges

- **Continuous consistency**
 - Replication for availability makes consistency hard to strictly maintain
 - Trade consistency for availability
 - Metric: max deviation from strong consistency on replica-basis

- **Gray Box**
 - How to acquire OS internal state info and control without modifying the OS?
 - Interpose information&control layers between client and the OS to exploit knowledge of the algorithms used by the box
 - Successfully used for controlling file caching, disk layout, etc
Software Bugs

- **Problem**
 - How to determine the correctness rules when programmers do not specify them

- **Solution**
 - Infer rules as “programmer beliefs” from static analysis
 - Cross-check them for contradiction

- **Evaluation**
 - Hundreds bugs are found in Linux: better than manual

- **Question**
 - Dynamic monitoring (*Eraser*) or static analysis?

- **Anticipate more papers on OS errors at next SOSP**
 - Device drivers have error rate 3-7 times higher than the rest of the kernel (see *Nooks* at next SOSP)
New Problems

- **Conserving Energy in Hosting Centers**
 - Problem: Energy becomes the driving resource management issue
 - Solution: Adaptation to load by dynamically resizing the active server set with a certain degradation of service

- **Sensor Networks**
 - Low-level naming based on attributes relevant to the application and external to the network topology (like INS but not over IP)
 - In-network processing of data: directed diffusion
 - What is the OS problem?
Main topic: **OS Robustness**
- Execute untrusted code: *Model-Carrying Code*
- VMM: *Xen, Untrusted on XOM, Terra*
- Handle bugs in OS drivers: *Nooks*
- Race condition detection: *RacerX*

Still around
- File Systems: *Google File System*

Follow-ups
- Policies into Mechanisms using *Infokernel*
- Overlay networks and P2P
New and old hardware inspires OS research

- Problem
 - OS not trusted

- Three solutions
 - Virtual Machine Monitors: *Xen*
 - OS over XOM processor architecture
 - HW trusted to execute tamper-resistant SW
 - OS over a trusted VMM (*Terra*)
 - Tamper-resistant HW partitioned in multiple isolated VMs
 - Applications can cryptographically authenticate the software stack to remote parties (attestation)
Growing interest on software bugs

- **Nooks**
 - Problem
 - faulty drivers
 - Solution
 - Fault resistance (survivability) not fault tolerance (reliability)
 - Isolate driver failures with lightweight protection domain to prevent kernel corruption

- **Backtracker**
 - Problem: analyze intrusions is hard
 - Solution: VM to log events and objects in dependency graphs
 - Remember Hypervisor at SOSP’95?

- Static detection of race conditions and deadlocks: RacerX
Main topic: OS Security and Robustness
- OS integrity without HW: Pionner
- Intrusion Detection and Containment: Vulnerability-Predicates, Vigilante
- Software bugs: Asbestos, Rx

Still around
- Declarative overlays
- Byzantine fault tolerance
- Semantics in File Systems: Connections (remember SOSP’91?)
- Race detection with adaptive tracking: RaceTrack

Follow-ups
- IRON File Systems
Pionner: No hardware inspires OS

- The Intellectual Problem:
 - Verify code integrity
 - No trusted hardware support

- Solution
 - All-software based code attestation using integrity measurements
 - Expected time of checksum code execution

- Assumption
 - Client (dispatcher) knows the configuration of the untrusted hardware
Software bugs: New Approaches

- **Labels & Events**
 - Problem
 - Current OS abstractions do not provide sufficient flexible isolation between different users
 - Solution
 - OS support for information flow control

- **Rx: treating bugs as allergies**
 - Problem
 - How to survive software failures safely
 - Idea
 - Bug exposure depends on execution environment
 - Solution
 - Rollback, modify environment and re-execute
A New OS Problem: Intrusion Detection

- Detecting intrusions using vulnerabilities predicates
 - Problem
 - Prevent software bugs to be exploited by the attacker until they are fixed
 - Solution
 - Define predicates to monitor intrusions that trigger the vulnerability
 - Use VMM: IntroVirt

- End-to-end containment of internet worms
 - Problem
 - Internet worms containment must be done automatically because they spread too fast
 - Solution
 - Collaborative worm detection and containment
 - Self-certifying alerts using proof of vulnerability (since hosts do not trust each other)
 - Use SCA to generate filters to block infection
Main topic: OS Robustness
 - Survive with vulnerabilities by blocking bad input: Bouncer

“Back to the Future”: Byzantine Fault Tolerance

Still around
 - Information flow-control: for the OS, for web applications
 - Energy
 - Virtual machine for commodity OS security: SecVisor – A Tiny Hypervisor
 - File systems: Dynamo (Amazon’s key-value store)

New problems:
 - Web and OS: MashupOS
 - Transaction Memory and the OS: TxLinux
 - OS maintenance: upgrade and configuration management
 - Storage of interaction: DejaView

Follow-ups
 - Software bugs: MUVI
Interesting novel projects

- **MashupOS**
 - Problem:
 - Web 2.0 applications are becoming complex
 - Browsers are left behind
 - Solution:
 - browser-based OS with support for protection and communication

- **TxLinux**
 - A new technology: hardware transactional memory
 - How to make OS locks work with transactions?
 - How to integrate transactions with OS scheduler
 - A well-done “traditional” OS work
“Rethinking” existing solutions in a different light
- FAWN: clusters of power-efficient well-balanced nodes
- Multi-kernel: OS structure for multicore systems
- BPFS: byte-addressable file system using BPRAM

Important result
- Formal verification of an OS kernel

Large-scale real experience
- Debugging at Microsoft

Survivability
- Drivers: tolerate hardware failures in software
- Surviving sensor networks software failures

Practical research:
- Drivers, debugging, scalable software routers
- Solutions for emerging hardware
- Machine learning and data mining techniques applied to OS
- Large authorship
- Strong presence of Microsoft Research
Some general observations

- A favorite theme
 - Created by a new technology, a new application domain
 - Sometimes its importance grows slowly
 - Dominates 1-2 SOSP cycles
 - After that, proposed solutions become complex and less influential

- Several permanent themes
 - File systems
 - Real time
 - Byzantine fault tolerance (BFT)
 - Software bugs?

- OS research hijacking?
 - Networking and sensor networks
 - Software engineering and compilers
 - Intrusion detection

- Model analysis becomes a necessary part of OS research
Some final tips

- Have a problem before having a solution
- Make sure that it is a real problem
 - “Your research must be a painkiller not a vitamin”
- Prior work
 - Read papers before you write
- Build prototype
- Evaluate with realistic load
 - Negative results are as valuable as positive results
- Work in a team
- Spend time on paper writing and presentation
- Evaluate the surprise factor (the “wow factor”) of your contribution
“Suggested” areas

- OS survivability, manageability and security
- Cyber-physical systems ("outdoor computing")
- Cloud computing systems
- Systems for smart phones
- Systems research opportunities in online social networking?
- Watch Google: Android, Chrome OS
Thank you!