Building Green Cloud Services at Low Cost

Josep Ll. Berral, Íñigo Goiri, Thu D. Nguyen,
Ricard Gavaldà, Jordi Torres, Ricardo Bianchini
Motivation

• Cloud services require thousands of servers
• Use multiple "mirror" datacenters
• Billions of dollars building and operating datacenters
• Datacenter costs depend on location
Green datacenters

• Datacenters consume large amounts of energy
• High energy cost and carbon footprint
 • Brown electricity: coal and natural gas
• Connect datacenters to green sources: solar, wind
• Some operators require green energy
 • For example, 50% of datacenter energy to be "green"

Apple DC in Maiden, NC

40MW solar farm
Challenges in green datacenters

- Solar and wind energy availability is variable
 - Use grid brown electricity
 - Use stored energy
- Use green energy
 - Energy storage: net metering and batteries
 - Multiple green datacenters
Placing green datacenters

- Datacenter with onsite renewable plant(s)
- Renewable costs depend on location
 - Land costs
 - Renewable energy availability

Wind availability

Solar availability
Workloads in green datacenters

- Multiple locations
 - Changing green energy availability over time
 - Use available green energy

- Workload follows the renewables
 - Consider migration overheads
 - Manage data in multiple locations
Goals

• **Siting and provisioning**
 • Pick locations
 • Datacenter sizes
 • Co-located solar/wind farm sizes
 • Green energy requirement (e.g., 50% green energy)

• **Managing workloads in green datacenter networks**
 • Follow-the-renewables policy
 • HPC jobs in virtual machines (VMs)
 • Network latency not an issue and "easy" to migrate load
Placement framework

- Datacenter costs
 - Depend on location and size

- Capital expenses (CAPEX)
 - Datacenter building
 - Cooling infrastructure
 - Servers and network
 - Connection to network and electrical grid
 - Renewable equipment and batteries
 - Ammortization and financing

- Operational expenses (OPEX)
 - IT and cooling operation
Formulating the problem

• Optimization goal
 • Minimize total cost (CAPEX and OPEX)

• Constraints
 • Green energy requirement (e.g., 50% green)
 • Datacenter availability constraint

• Output
 • Location and datacenter size
 • Renewable plant type and size
 • Battery size (if used)
Solving the problem

• Problem not linear: new solution approach
 • Initial location filtering
 • Simplified problem (MILP)
 • Simulated annealing enhanced with heuristics
Input data: location-related

- 1373 locations around the world
- Meteorological data
 - Typical meteorological year (TMY)
 - Solar irradiation
 - Wind speed
 - Temperature
- Grid electricity costs
 - Power plants
 - Transmission lines
 - Energy cost
- Other datacenter costs
 - Major network backbones
 - Land costs
Input data: capacity factors

- Solar/wind energy generation
 - Solar panel model (W/m\(^2\)→W)
 - Wind turbine model (m/s→W)
 - Renewable plant size (W)
 - Location weather data
- Capacity factor
 - Actual power ratio over capacity
 - Over a full year
- Solar is more available
 - Wind is higher in few locations
- Location correlation
 - Solar/wind availability
 - Temperature (→PUE)
Green datacenter placement

- 50MW computation capacity
- 50% renewable energy requirement
- Net metering to handle variability

![Chart showing costs and resources](chart.png)

Right amount of capacity, no resources idle

- Mount Washington (New Hampshire)
 - Land wind
 - Building wind farm
 - Network bandwidth
 - Brown energy
 - Connection grid/net
 - IT equipment
 - Land DC
 - Building DC

- Grissom (Indiana)
 - Land wind
 - Building wind farm
 - Network bandwidth
 - Brown energy
 - Connection grid/net
 - IT equipment
 - Land DC
 - Building DC
Green energy requirement

- Build a 50MW network using net metering

Wind more cost-effective than solar (3x cheaper)
Green cost overhead 13% for 50% green always <20%
Placement with no green energy storage

Massive renewable plants

Everything replicated

Mexico

Guam

Zimbabwe

<table>
<thead>
<tr>
<th>Location</th>
<th>Land wind</th>
<th>Building wind farm</th>
<th>Land solar</th>
<th>Building solar</th>
<th>Network bandwidth</th>
<th>Brown energy</th>
<th>Connection grid/net</th>
<th>IT equipment</th>
<th>Land DC</th>
<th>Building DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td></td>
</tr>
<tr>
<td>Guam</td>
<td></td>
</tr>
<tr>
<td>Zimbabwe</td>
<td></td>
</tr>
</tbody>
</table>
Impact of green energy storage

- Green energy storage mitigates variability
 - Batteries ~2x more expensive than net metering
 - No storage ~5x more expensive

- One case where solar more cost-effective than wind
 - No storage and high green energy requirement
 - More predictable
How to operate a green datacenter network?

• Feasibility of "follow the renewables“
• Run HPC jobs
 • No latency requirements
• Need to move load between locations
 • VMs for live migration
 • Distributed file system
• Policy to follow the renewables
 • Predict green energy availability per site
 • Consider migration overheads
 • Version of the original placement MILP
GreenNebula

- Based on OpenNebula
 - Scheduling policy to place and migrate VMs across datacenters
 - Distributed file system: append only, diff...
GreenNebula results

- Validated in prototype system
 - Migration between Barcelona and New Jersey
- Placement with 3 locations (previous example)
 - 100% green energy with no energy storage
Conclusions

• Building a green network of datacenters
 • Partially powered by on-site renewables

• Siting and provisioning
 • Quantify cost of being green
 • Energy storage costs
 • Usually wind is cheaper
 • Solar more reliable for high green energy requirements
 • Net metering most “cost-effective” storage medium
 • Batteries only slightly more expensive up to 75% green

• GreenNebula
 • Follow-the-renewables VM scheduler
 • Extend siting optimization problem
Building Green Cloud Services at Low Cost

Josep Ll. Berral, Íñigo Goiri, Thu D. Nguyen,
Ricard Gavaldà, Jordi Torres, Ricardo Bianchini