Priority Queue: data structure for set of items from an ordered universe (more precisely their keys are ordered)

item = (name, pointer, key)
supports operations

basic
insert (item)
extractmin - returns and deletes item having smallest key

odd'n operations
merge (Q₁, Q₂)
forms union & Q₁, U Q₂
(destroy Q₁, Q₂)
delete (x) x = name of item
findmin - returns item with least key
decreasekey (x, Δ)
\[x_{\text{key}} \leftarrow x_{\text{key}} - \Delta \]
more generally, \(x_{\text{key}} \) gets smaller value
Leftist Trees first implementation of meldable priority queues - i.e. supports merging.

Implemented as heap-ordered binary trees

Each node stores one item, and heap order condition is maintained:

- Key of item in child = key of item in parent
- Minimum found in root node

Tree structure satisfies leftist condition:

- Shortest path from any node to a null pointer proceeds rightward. Above tree diagram not leftist

- is leftist
Merging two leftist trees:

\[
\begin{array}{c}
\text{Step 1: Merge the ordered lists of } a_i \text{'s and } b_i \text{'s into single ordered list and form tree with rightward path respecting combined order.}
\\
e.g., a_1 < a_2 < b_1 < a_3 < b_2 \ldots
\end{array}
\]
Possible violations are confined to nodes on right path from root.

Suppose subtrees U and V satisfy leftist property.

Leftist property is destroyed if not satisfied. Can be restored by swapping U and V.

Step 2 We maintain in each node an additional field (right height) = shortest distance to null link.

Start at node on right path furthest from root and do fix-up steps at each node:

- $r_i < \frac{1}{2}$
- $s_k = \min(r_1, r_2) + 1$
work involved in merging = $O(mn)$

also = $\Theta(mn)$

within constant factors of mn

Extractmin

1. remove x

Insert(x)

2. merge (A, B)

merge(x, \triangle)

Analysis

Claim: For a tree with n nodes, right height $\leq \log_2(n+1)$
\(N = \# \text{ nodes in tree} \)

\(\text{r.h.} = \text{right height} \)

Number of nodes \(\geq 15 \)
\[= 2^{(r.h+1)} - 1 \]

\[
\text{r.h.} \leq \log_2 (n+1) - 1
\]

to merge trees of sizes \(m, n \)

involves work = \(O(\text{r.h.} + \text{r.h.}^2) \)

\[= O(\log_2 m + \log_2 n) \]

\[= O(\log_2 (m+n)) \]

\[= O(\log(\max(m,n))) \]

\[\log_2 (m+n) \leq \log (2 \cdot \max(m,n)) \]
Generally operation cost =

\[O \left(\log \left(\text{resulting tree size} \right) \right) \]

Running time - overall

sequence of operations \(q_1, q_2, \ldots \)

\(s_i = \text{size of R.E. upon completion of } q_i \).

\((x) \) cost of sequence = \(O \left(\sum \log s_i \right) \)

Can we dispense with right height fields and still preserve \((x) \)

\[\text{Steep} \]

\[\begin{array}{c}
A \\
B \\
C \\
\vdots \\
D \\
\end{array} \]
A. Do no swaps
B. Swap at every node along right path

Strategy B
approach is referred to as a skew heap

To establish that skew heaps provide
same performance as leftist trees, we develop
amortized analysis.

What does it accomplish?

Given sequence of operations

O_1, O_2, O_3, \ldots

with costs $c_i = \text{cost}(O_i)$, let

a_1, a_2, \ldots be a sequence that satisfies
Amortized Analysis for Skew Heap

$m = \text{number of nodes in subtree}$

$n = \text{number of nodes in parent subtree}$ if $m/n \geq 1/2$

the link from parent to child is heavy

light if not heavy

1. A heavy link has a light sibling link
2. For any path starting at root, the number of light links $\leq \log_2(\text{tree size})$

$n' + n'' < n/2$ when link is light

Potential defined to be number of right heavy links
Intuition

Expensive operations involve long rightward paths contribute significantly to the potential.

Suppose trees being merged have right paths of length k_1 and k_2.

$$T_i \quad p \quad T_2$$

$$P_1 = k_1 - \log |T_1|$$

$$P_2 = k_2 - \log |T_2|$$

$$P = k_1 + k_2 - \log |T_1| - \log |T_2|$$

Since each off-path right link that's heavy accounts for an on-path
\[\Delta P = P_{\text{After}} - P_{\text{Before}} \leq 3 \log n - k_1 - k_2 \]
\[t + \Delta P = (k_1 + k_2) + \Delta P \leq 3 \log n + t \]

Fibonacci Heaps

All standard B.E. operations supported

- *findmin*: returns item with least key
- *insert*
- *merge*
- *deletion*
- *decrease-key* (more efficient than delete + re-insert)

Amortized costs:
- \(\log n \) for deletion
- Constant for the other operations.