1. Consider a directed graph with each edge assigned a nonnegative weight D that reflects the difficulty of passing over that edge (perhaps modeling an obstacle course). Define the difficulty of a directed path to be the maximum of the difficulties of its edges. Give an efficient algorithm that computes a path from s (a designated vertex) to each of the other vertices, such that the path to any given vertex has minimum difficulty among all such paths.

2. Consider expanding tree-based union-find programs by including the added operation, print-set(x), that prints each of the members of the set containing x in some arbitrary order. Show how this can be implemented with just one extra pointer per node, so that its running time is O(number of elements printed out), and none of the other operations are degraded by more than a constant factor in terms of efficiency.

3. Suppose that an operation has negative amortized cost with respect to a particular choice of potential function P that starts out at 0, and always remains non-negative. What conclusion can be drawn?

4. Do an amortized analysis for the cost of incrementing a base 3 counter, where actual cost of an increment operation is defined to be the number of positions that change by the operation. Give a potential function for which the amortized cost of increment is $3/2$.

Do exercises 5.10 and 5.22 (part a) in the text.