Presented here is a more thorough explanation of the behavior of breadth-first search (bfs) than provided in the text.

Let G be a graph (either directed or undirected) and let s be the root a bfs-tree T resulting from a bfs traversal of G; among all nodes in T, s is the first discovered. We consider the traversal algorithm to be augmented to assign depth values: $\text{depth}(s) = 0$ and $\text{depth}(w) = \text{depth}(v) + 1$ where v is the parent of w in T. Define the \textit{edge-length} of a path to be the number of edges belonging to the path, and define $\text{dist}(s, v)$, the distance from s to a node v, to be the smallest edge-length of any path from s to v in G. Our main goal is to establish the following claim.

\textbf{Claim.} There exists a path from s to the node u if and only if $\text{depth}(u)$ has been assigned, in which case $\text{depth}(u) = \text{dist}(s, u)$.

We use the following \textit{Observations} about breadth-first search. (a, b, v, w, and x denote nodes in T.)

1. For a node w in T, $w \neq s$, the parent of w is the first discovered node x such that there is an edge from x to w.

2. If a is the parent of v and b is the parent of w in T, and a is discovered before b, then v gets discovered before w.

\textbf{Lemma.} For nodes v and w, if v gets discovered before w then $\text{depth}(v) \leq \text{depth}(w)$.

\textbf{Proof:} We argue by contradiction. Let v and w be a pair of nodes that constitute a counter-example with w chosen as having the least depth value among all counter-examples. To constitute a counter-example, it must be that v is discovered before w and $\text{depth}(v) > \text{depth}(w) \geq 0$, so that both v and w have parents a and b respectively. The nodes a and b are distinct, since otherwise v and w would have the same depth values. The second observation (above) implies that a is discovered before b. Furthermore, based on the minimality condition for the choice of w, $\text{depth}(a) \leq \text{depth}(b)$. But then $\text{depth}(v) \leq \text{depth}(w)$ since $\text{depth}(v) = \text{depth}(a) + 1$ and $\text{depth}(w) = \text{depth}(b) + 1$.

\textbf{Proof of the Claim:} If $\text{depth}(u)$ is assigned, then there is a path from s to u, namely, through the bfs-tree. We complete the proof by showing that if a path from s to u exists, then $\text{depth}(u)$ is assigned the value $\text{dist}(s, u)$. To the contrary let u be a node having least distance from s, for which either $\text{depth}(u)$ is not assigned, or $\text{depth}(u) > \text{dist}(s, u)$. Certainly $u \neq s$, so let v be the node immediately preceding u on a path of minimal edge-length from s to u. Then $\text{dist}(s, v) = \text{depth}(v)$ (by the minimality condition under which u is chosen), and the parent of u is either v or a node discovered earlier (by the first observation, above). It then follows from the lemma that $\text{depth}(u) \leq \text{depth}(v) + 1 = \text{dist}(s, u)$, completing the proof.